
Book

A Simplified Approach

to

Data Structures
Prof.(Dr.)Vishal Goyal, Professor, Punjabi University Patiala

Dr. Lalit Goyal, Associate Professor, DAV College, Jalandhar

Mr. Pawan Kumar, Assistant Professor, DAV College, Bhatinda

Shroff Publications and Distributors
Edition 2014

Prof.(Dr.) Vishal Goyal,Department of Computer Science, Punjabi University Patiala

ONE-WAY LINK LIST

2

• Introduction To Linked list

• Introduction To One Way Linked list

• Operations on One Way Linked List

Contents

3

Linked List

• A linked list can be defined as the linear collection of

elements where each element is stored in a node.

• The linear order b/w elements is given by means of

pointers instead of sequential memory locations.

Introduction to Linked List

4

• Singular or one-way linked list.

• Doubly or two-way linked list.

• Circular linked list.

• Header linked list.

Types of Linked List

5

It is also known as singular linked list.

Each node has two parts:-

• The first part is known as info part which holds the element.

• Second part is known as next part which holds the address of

next node.

One Way Linked List

6

One Way Linked List

Info Address of next node

7

Operations of 1-Way Linked List

• Traversing a linked list.

• Searching an element in linked list

• Inserting an element in linked list

• Deleting an element in linked list

• Copying a linked list.

• Merging two linked lists

• Splitting linked list into further parts.

8

Traversing A Linked List

Traversing a linked list refers to visiting each node of the list

in order to process the elements stored in the nodes.

Example:- list of students with roll no.

401 402 Null414

401 402 414

9

Begin

Algorithm : Traversal of linked list

Step1.If Begin=Null then

Print ”linked list is empty”

Exit

[End If]

Step2. Set Pointer =Begin

Step3.Repeat While Pointer!=Null

a. print : Pointer Info

b. Assign Pointer =Pointer Next

[End loop]

Step4.Exit

10

• In searching we traverse the list from begin and compare the

elements stored in each node with the desired element to be

searched

• If match is found then the address of the node is returned

otherwise we proceed to next node

• If element not found till null then search unsuccessful

Searching In A Linked List

11

Searching In A Link List

12

Begin 104 102 103 Null

Pointer

102

Item found in link list

Algorithm :Searching a Linked List

Step1: If Begin = Null Then

Print:”Linked List is Empty”

Exit

[End If]

Step 2: Set Pointer = Begin

Step 3: Repeat While Pointer != Null

If Pointer info = Data Then

Print : “Element is found at address”:Pointer

Exit

Else

Set Pointer = Pointer Next

[End If]

[End Loop]

Step 4: Print : “Element not found in linked list”

Step 5 :Exit
13

14

Memory Allocation/Deallocation

Before we move on to insertion and deletion in a linked list

part let’s discuss about memory allocation and deallocation.

• To insert an element into the linked list , First we need is

to get a free node.

• In case of deletion of a node, it is desired to return to

memory taken by deleted node for its reusability in future.

• First we get a free node from the free storage list

• Then element to be inserted is placed into the info part of the

node and pointers are set to add the new node at desired location

of list.

Insertion In Linked List

15

Insertion In Linked List (Continued)

Where we can insert element in linked list?

• At the beginning of linked list

• At end

• At a particular position in list

• In the sorted linked list

16

Insertion At Beginning

Begin 12 Null

Null414

400

Begin 401 88

17

Algorithm : Insertion At Beginning

Step 1: If Free = Null Then

Print : “Overflow: No free available for insertion”

Exit

[End if]

Step 2: Allocate Space to node New

(set New = Free And Free = Free Next)

Step 3: Set New Info = Data

Step 4: Set New Next = Begin And Begin = New

Step 5: Exit

18

• If list is empty, store null value in next part of new node and insert

item in the info part

• If list is not empty, traverse list till end node.

• Store address of new node into next part of the last node of the

linked list and the next part set to null.

Insertion At End

Begin 401 402 Null414

405 Null

Pointer

19

New

Algorithm : Insertion At End

Step 1: If Free = Null Then

Print :”Overflow: No free space available for insertion”

Exit

[End If]

Step 2: Allocate space to node New

Set New = Free And Free = Free Next

Step 3: Set New Info = Data , New Next = Null

Step 4: If Begin = Null Then

Begin = New

Exit

[End If]

Step 5: Set Pointer = Begin

Step 6: Repeat While Pointer Next != Null

Set Pointer = Pointer Next

[End Loop]

Step 7: Set Pointer Next = New

Step 8: Exit 20

Insertion At A Particular Position

• Locate the position of the node after which we want to insert

the new node.

• 2 cases are there if location found and if not found

• Traverse till we not reach on desired loc.

• If we reach on desired loc. Then loc. Found insert element if

we reach on end but not find a loc. Yet then loc. Not found.

21

Insertion At Any Location

Begin 401 402 Null414

Item

New Next=Pointer Next

Pointer Next=New

22

Pointer

Algorithm : Insertion At Any Location

23

Step 1: If Free = Null Then

Print : “Overflow: No free space available for insertion”

Exit.

[End If]

Step 2: Set Pointer = Begin

Step 3: Repeat While Pointer!=Null And Pointer Info!=Data

Set Pointer = Pointer Next

[End Loop]

Step 4: If Pointer = Null Then

Print: “The node containing element Data is not
present, so insertion is not possible.”

Else

Allocate space to node New

Set New=Free, Free=Free Next, New Info=Item

Set New Next=Pointer Next

Set Pointer Next=New

[End If]

Step 5: Exit

24

Insertion In Sorted Linked List

• Find the position of the node after which new node has to be

inserted

• List can be sorted in ascending order and descending order

• In ascending order first we compare the element with the

first element if inserted element is small then it will inserted

at first position else comparing goes on in desc. Order it is

opposite.

25

Insertion In A Sorted Linked List

Begin 401 405 408 Null

403

Pointer

New

26

Algorithm : Insertion At Any Location In sorted Link List

27

Step 1: If Begin = Null Then

Allocate Space to node New

Set New = Free and Free = Free Next

Set New Info = Item

Set New Next = Begin and Begin = New

[End If]

Step 2: If Item < Begin Info Then

Allocate Space to node New

Set New = Free And Free = Free Next

Set New Info = Item

Set New Next = Begin and Begin = New

Exit

[End If]

Step 3: Set Pointer = Begin and Pointer2 = Begin Next

Step 4: Repeat While Pointer2 != Null and Item > pointer2 Info

Set Pointer1 = Pointer2 and Pointer2 = Pointer2 Next

[End loop]

Step 5: If Free = Null Then

Print : “No space for insertion , Allocation of space to node

New is not possible”

Exit

[End If]

Step 6: Allocate space to node New

Set New = Free and Free = Free Next

Step 7: Set New Info = Item

Step 8: If Pointer2 = Null Then

Set Pointer1 Next = New and New Next = Null

Else

Set New Next = Pointer Next

Set Pointer1 Next = New

[End If]

Step 9: Exit 28

Deletion From Linked List

Deletion can be done in 3 ways:

• Deleting a node at the begin of link list

• Deleting a node at end.

• Del. A particular node in the linked list.

29

DELETION OF NODE FROM BEGIN OF LIST

• Deletion of a node at the begin of the list is a very simple operation

which can be done by changing the list pointer variable begin.

• Now begin will point to next node in the list.

• The space occupied by the deleted node is returned to the free storage

list.

30

Deleting A Node At Begin.

Free

414

Null

Begin 401 402 Null

Algorithm : Deletion At Beginning of the linked list.

Step 1: If Begin = Null then

Print:”linked list is already empty”

Exit

[End if]

Step 2: set Item = Begin Info and Pos = Begin

Step 3: Begin = Begin Next

Step 4:Pos Next = Free and Free = Pos

Step 5:Exit

31

• For deleting the lost node from the given plinked list, it is

necessary to traverse the entire linked list for finding the

address of the preceding node of the last node i.e, address

of second last node.

• After finding the address of the second last node we will

store the address stored in the next part of the last node

into the next part of the second last node i.e null will be

stored in the next part of the 2nd last node.

32

Deleting A Node At End

Deleting A Node At End

Free Null

Begin 402 Null414

Pointer1->Next=Pointer2->Next
Pointer2->Next=Free

Free=Pointer2

401

33

Pointer1 Pointer2

Pointer1 = Begin

Pointer2 = Begin->Next

Pointer1 = Pointer2

Pointer2 = Pointer2 -> Next

NULL

Algorithm : Deletion At End

Step 1:If Begin = Null Then

Print : “Linked List Empty”

Exit

[End If]

Step 2: If Begin Next = Null Then

Set Data = Begin info

Deallocate memory held by Begin

(Begin Next = Free and Free = Begin)

Set Begin = Null

Exit

[End If]

Step 3: Set Pointer1 = Begin and Pointer2 = Begin Next

Step 4: Repeat While Pointer2 Next!= Null

Set Pointer1 = Pointer2 and Pointer2 = Pointer2 Next

[End loop]
34

c

Step 5: Set Pointer1 Next = Pointer2 Next

Step 6: Set Data = Pointer2 Info

Step 7: Deallocate memory held by Pointer2

(Pointer2 Next = Free and Free = Pointer2)

Step 8:Exit

35

• For deleting a particular node from the linked list, the first

task is to find the address of the preceding node of nth

node to be deleted.

• To complete the task traverse the linked list from begin and

compare the info. Stored in node with item.

• Two pointers pointer1 pointer2 will be used while

traversing the list for locating the address of the node to be

deleted and address of it’s preceding node.

36

Delete A Particular Node From Link List

Deleting A Particular Node In Link List

Begin

25 17 8

Free

Null

Pointer1 ->Next=Pointer2->Next

Pointer2->Next=Free

Free=Pointer2

4
Null

Pointer1 Pointer2

37

Algorithm: Deletion At Any Location

Step 1 :If Begin = Null Then

Print : “Linked List is Empty”

Exit

[End If]

Step 2: If Begin Info = Item Then

Set Pos = Begin

Set Begin = Begin Next

Pos Next = Free and Free = Pos

Exit

[End If]

Step 3: Set Pointer1 = Begin and Pointer2 = Begin Next

Step 4: Repeat While Pointer2! = Null and Pointer2 Info!= Item

SET Pointer1 = Pointer2 and Pointer2 Next

[End loop]

38

Step 5: If Pointer2 = Null Then

Print :”Node containing element item not found”

Exit

Else

Set Pointer1 Next = Pointer2 Next

[End If]

Step 6: Deallocate memory held by Pointer2

(Set Pointer2 Next = Free and Free = Pointer2)

Step 7: Exit

39

Copy A Link List Into Other Link List

• Consider the linked list with its start pointer as begin1.For

copying this given linked list into another list, use a new

pointer variable begin2 for the list in which source list will be

copied.

• Initially we will store null in the list variable begin2.

• Now we will traverse the entire source list from begin to the

end by copying the contents to the new target.

40

Copy A Link List Into Other Link List

17 8

Begin1 25 17 Null388

Begin2 25 Null38

A Link List Is Copied

41

Pointer

Algorithm: Copying One Link List Into Another Link List

42

Step 1: If Begin1=Null Then

Print: “Source List is Empty”

Exit

[End If]

Step 2: Set Begin2=Null

Step 3: If Free=Null Then

Print: “Free space not available”

Exit

Else

Allocate memory to the node New

Set New=Free And Free=Free Next

[End If]

Step 4: Set New Info=Begin1 Info And New Next=Null

Step 5: Set Begin2=New

Step 6: Set Pointer1=Begin1 Next And Pointer2=Begin2

Step 7: Repeat While Pointer1!=Null And Free!=Null

a. Allocate memory to node New

(New=Free And Free=Free Next)

b. Set New Info=Pointer1 Info And New Next=Null

c. Set Pointer2 Next=New

d. Set Pointer1=Pointer1 Next And Pointer2=New

[End Loop]

Step 8: If Pointer1==Null Then

Print: “List copied successfully”

Else

Print: “Not enough space to perform copy operation”

[End If]

Step 9: Exit

43

Merging Two Linked List

• There are number of applications where there is need to merge

two or more linked lists into a single linked list.

• Merging operation refers to putting the elements of two or more

lists into one list.

• The list can be sorted or unsorted.

Begin2 10 17 Null30

Begin1 25 27 Null42

44

After Merging

Begin
Merged Complete List

Begin2 10 Null30

Begin1 Null42

Pointer1

Pointer2

17

2725

10
17 25 27 30 Null42

45

Algorithm : Merging Two Sorted Linked List

Step 1: If Begin1=Null or Begin2=Null then

Print “one of the given linked list is empty”

Exit

[end if]

Step 2: If Free =Null then

Print: “no free space available”

Exit

Else

//Allocate memory to node New

Set New =Free and Free=Free Next

[End If]

Step 3: Set Begin=Null

Step 4: If Begin1 Info > =Begin2 Info then

Set New Info=Begin2 Info and New Next=Null

Set Pointer1=Begin1 and Pointer2=Begin2 Next

46

Else

Set New Info=Begin1 Info and New Next=Null

Set Pointer1=Begin1 Next and Pointer2=Begin2

[End If]

Step 5: Set Begin=New and Pointer =New

Step 6: Repeat steps 7and 8 while Pointer1!=Null and Pointer2!=Null

Step 7: If Free=Null then

Print “No free space available”

Exit

Else

Set New =Free and Free=Free Next

[End If]

Step 8: If Pointer1 Info >=Pointer2 Info then

Set New Info=Pointer Info

Set New Next=Null

Set Pointer Next=New

Set Pointer=New and Pointer2=Pointer2 Next 47

[End If]

[End Loop]

Step 9: If Pointer1=Null and Free!=Null then

Repeat while Pointer2!=Null

a. Set New=Free and Free=Free Next

b. Set New Info=Pointer2 Info and

New Next =Null

c. Set Pointer Next=New

d. Set Pointer =New and Pointer2=Pointer2 Next

[End Loop]

Else

Repeat while Pointer1!=Null

a. Set New=Free and Free=Free Next

b. Set New Info=Pointer1 Info and

New Next=Null

c.Set Pointer Next=New

d. Set Pointer=New and Pointer1=Pointer1 Next48

[End Loop]

[End If]

Step 10: If Pointer1 = Null And Pointer2=Null Then

Print: “The given link lists merged successfully”

Else

Print “Not Enough space”

[End If]

Step 11: Exit

49

Splitting Two Lists

• Suppose we have a linked list which we want to split into

lists.

• First we check total no. Of nodes then (N/2)th and (N/2+1)th

Node.

• After finding these addresses we will store null in the next

part of the (n/2)th node and address of (n/2+1)th node will be

stored in the new list pointer variable begin2.

• Now our list divide into 2 parts n/2 and n-n/2 with list

begin1 and begin2.

50

Splitted List1 And List2 .

17 2710 Null28

Begin

Begin2

27 28 Null30

Begin1

10 17 Null25

Pointer

51

3225

Algorithm: Split A Link List Into Two Link Lists.

52

Step 1: If Begin=Null

Print: “Splitting cannot be performed on empty list”

Exit

[End If]

Step 2: Set pointer= Begin And Count=0

Step 3: Repeat Steps 4 and 5 While Pointer!=Null

Step 4: Set Count=Count 1

Step 5: Set Pointer=pointer Next

[End Loop]

Step 6: Set Mid=Integer(count/2)

Step 7: Set Begin2=Null And Pointer=Begin And i =1

Step 8: Repeat Step 9 While i<Mid

Step 9: Set Pointer=Pointer Next

Set i=i 1

[End Loop]

Step 10: Set Begin2 = Pointer Next And

Pointer Next = Null

Step 11: Exit

53

Reversing A One Way Linked List

• To reverse a linked list, we need to use three pointers

variables.

• One pointer variable is used to store the address of current

node.

• Second pointer variable will be used to store the address of

next node.

• The third pointer variable will be used to store the address of

next to next of current node.

54

Reversing A One Way Linked List

Begin2

105 Null

Begin1

5 Null10

55

Reverse Link List With More Than Two Nodes

17 2725Null10 4228

Begin

17 272510 Null4228

Begin

56

Algorithm: Reverse The One Way Link List

57

Step 1: If Begin = Null Then

Print: “No node is present in link list”

Exit

[End If]

Step 2: If Begin Next = Null Then

Print: “link list is having only one node”

Exit

[End If]

Step 3: If Begin Next != Null Then

Set Pointer1 = Begin

Set Pointer2 = Begin Next

Set Pointer3 = Pointer2 Next

[End If]

Step 4: If Pointer3 = Null Then

Set Pointer2 Next = Pointer1

Set Pointer1 Next = Null

Set Begin = Pointer2

Exit

[End If]

Step 5: Set Pointer1 Next=Null

Step 6: Repeat steps 7 to 10 while Pointer3 Next!=Null

Step 7: Set Pointer2→ Next=Pointer1

Step 8: Set Pointer1=Pointer2

Step 9: Set Pointer2=Pointer3

Step 10: Set Pointer3=Pointer3 Next

[End Loop]

Step 11: Set Pointer2 Next=Pointer1

Step 12: Set Pointer3 Next=Pointer2

Step 13: Set Begin=Pointer3

Step 14: Exit 58

